

POWERED BY ISKRAEMECO

Flexibility solution. Real-time grid protection and predictive load planning

www.iskraemeco.com

Grid stress from the energy transition

Underutilised capacity of existing infrastructure.

Lack of flexibility tools

Congestion and instability

Blocked renewable projects

Rising grid costs and CAPEX

4

Traditional ways to solve it

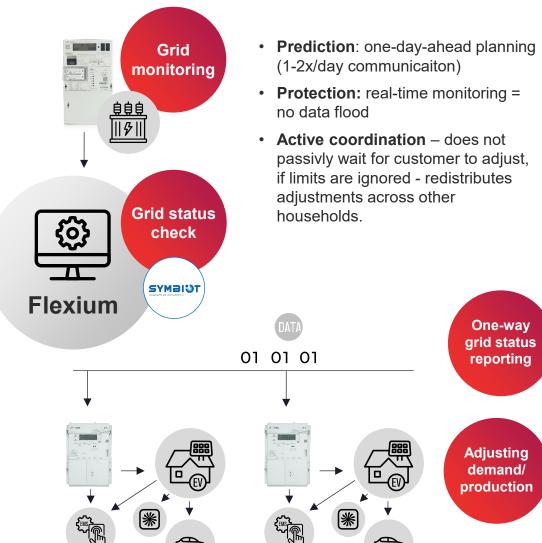
- Physical upgrade of infrastructure
- Tariff manipulation (time of use tariff).
- Regulations to limit new PV connections.
- Contracts with large industrial loads
- Stand alone load management systems.

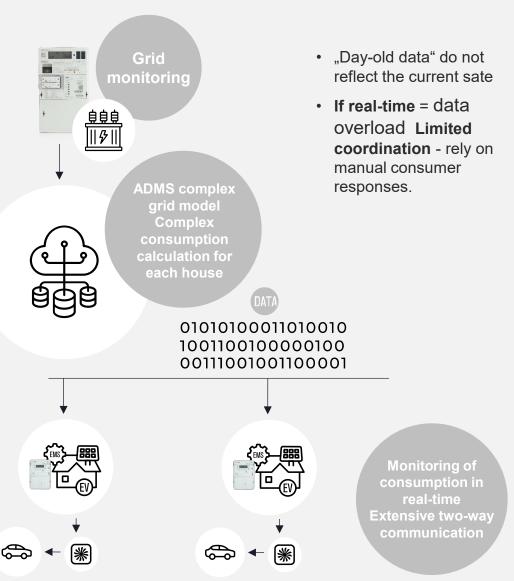
Energy transition → DERs → Active consumers → The traditional system no longer works!

Not smart

Not dynamic

Not real-time


Not scalable


Expensive

Flexium

other flexibility solutions

Grid capacity utilisation strategies

TRADITIONAL:

- Tariff manipulation (time of use tariff).
- · Block new PV connections.
- Physical upgrade of infrastructure.
- · Contracts with large industrial loads.
- Stand alone load management systems & ripple control".

FLEXIUM:

- Upgrades existing assets with intelligent, software-based control.
- **Prevention** day-ahead planning of demand and generation, enabling grid operators to instruct devices to use the grid in the most optimal way based on forecasts.
- Protection is a reactive mechanism that functions in real time. It
 ensures the grid remains within operational limits by observing live
 data and responding to anomalies such as overloads or
 overvoltages. Delivering power constraints to device management
 systems.

Protection

Protection from overload, overvoltage, and congestion. Continuously monitoring grid conditions (voltage, power quality), generating capacity events/power constraints, setting dynamic per-household import/export power (kW) limits, and adjusting operation of key devices (PV, EV chargers) in real-time.

Prevention

 Integrating multiple inputs, such as grid flexibility forecasts from authorities for balancing services, power generation forecasts, and power demand forecasts to calculate the optimal utilization of smart devices. The result is a detailed utilization plan for the following day, tailored to each device's capabilities and the grid's needs.

How does "FLEXiUM protection" works?

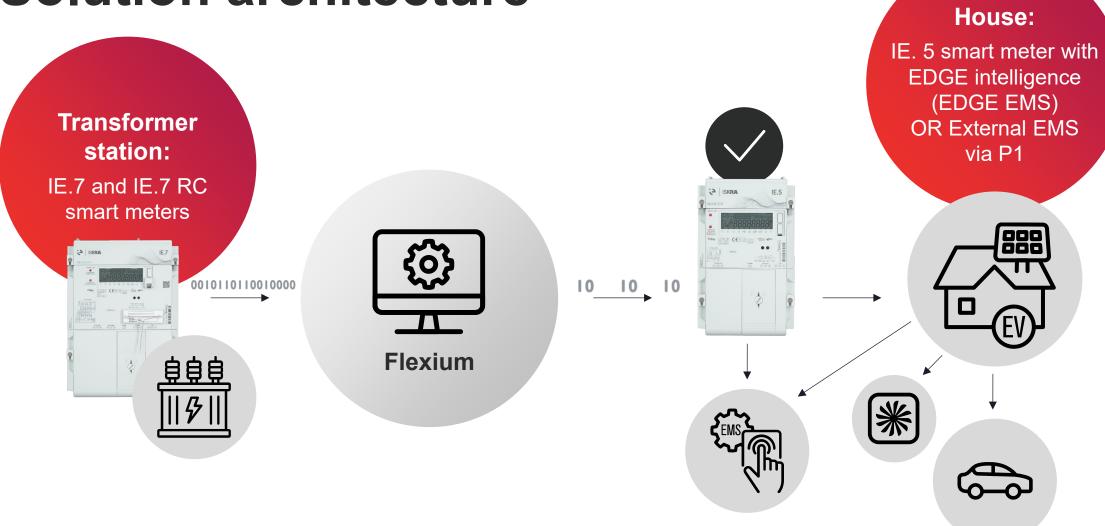
1. Monitor the grid conditions

 Real-time grid monitoring via smart meters capturing voltage and power flow, data at the critical points of the distribution network (transformer, end of LV feeders and other).

2. Generate capacity event

Based on monitored real-time data
 FLEXiUM generates capacity event toward smart meters equipped EDGE EMS (or external EMS via P1.)

3. Calculate power export/import limits


Capacity event
 (information about
 the grid status &
 flexibility need) received by smart
 meter and then
 used for calculation
 of power limits for
 export and imports
 that are sent to
 flexible loads (PV,
 EV, BEES, HVAC).

4. Adjust devices

 Meters with EDGE EMS automatically coordinate optimal operation of local flexible devices (PV inverter, EV charger, battery, HVAC) within import/export power limits.

Solution architecture

How does "FLEXiUM prevention" works?

For prevention, **linear programming** is employed. This method integrates multiple inputs:

The result is a detailed utilization plan for the following day, tailored to each device's capabilities and the grid's needs.

FLEXIUM benefits

Low-CAPEX alternative

Flexium replaces costly, long grid upgrades with software-based control. It runs on existing AMI; meters are upgraded via firmware, no new hardware needed.

Real-time

Smart meters with EDGE EMS automatically controls devices in 1-minute interval, ensuring grid-level coordination.

Smart

Generates specific capacity event and per-home import/export kW limits.

Flexible

Integrates with energy optimization strategies and virtual power plants (VPPs), aggregating distributed resources into one controllable unit for balancing services

Dynamic

Imports/exports limits adapted to the grid current loads, not fixed time blocks.

Reliable

Flexium periodically recalculates and adjusts capacity limits, grid stability doesn't rely on consumers adjusting their usage. If a home misses its limit or doesn't respond, the system redistributes the adjustment across other homes, actively coordinating flexibility.

Reference project with Mercator and Elektro Ljubljana

Information about the project:

- Customers: Mercator (retail chain) and Elektro Ljubljana (distribution system operator)
- · Country: Slovenia
- Application: Distribution grid flexibility and assets optimization
- Goal: maximize on-site energy use from their own sourcesand minimize energy costs.

FLEXIUM use case:

- Flexium generates one-day-ahead forecasts using load, solar generation, and energy prices forecasts.
- Based on these forecasts, it calculates the optimal day-ahead plan for battery and solar.
- The EDGE executes real-time control: Battery management (charging and discharging schedules). PV output control, aligning production with forecasted on-site consumption.

Assets:

- Rooftop solar PV plant connected to the store.
- Battery storage system rated at 100 kW / 233 kWh, installed on-site next to the store.
- Energy import only (no export to the grid).

Results:

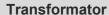
- Lower energy costs (cost reduction of X %, depending on conditions).
- Improved self-consumption of PV energy.
- Automated control and optimization, without overloading the grid or requiring manual intervention.

Mercator's Murgle store.

A smart meter with an EDGE module is installed in the transformer station on Koseski Street.

The battery storage system and the solar PV plant are connected according to wiring scheme PS.2.

A 100 kW / 233 kWh battery storage system is installed next to the store.



The EDGE EMS is installed on the smart meter, which is connected in parallel with the billing meter P3.

The solar PV plant is installed on the store's roof.

Mercator's Murgle store.

Additional meter with EDGE module.

Solar power plant: 70 kWp / 60 kW

Ethernet/ Modbus

Dodaten števec z EDGE modulom

Central EDGE EMS

Azure

Battery storage system: 100 kW / 233 kWh

Ethernet! Modbus

Thank you

